Evaluation of Immunotoxicity

Paul W. Snyder, DVM, PhD
Purdue University
Overview

- Immune system
 - Lymphoid tissues
 - Differentiation, maturation, and selection
 - Cell distribution
- Thymic involution
- Stress and the immune system
 - Predicting immunotoxic potential
- Immunotoxicity
 - Suppression
 - Enhancement
- What is the “issue”
- Lymphoid tissues
- Best Practice Guidelines
Immune System

- Comprises complex cellular and physiologic mechanisms to protect the host
- Primary and secondary lymphoid tissues
 - Thymus, bone marrow
 - Spleen, lymph nodes, tonsils, “ALT”s”
- Specific and non-specific responses
 - Innate immunity
 - First line of defense, antigen non-specific
 - Neutrophils, macrophages, IL-1, IL-6, TNF-α, TLR
 - Adaptive immunity
 - Second line of defense, antigen specific
 - Lymphocytes, CMI, antibody production
Lymphoid tissues

- **Primary lymphoid tissues**
 - Generation of B and T lymphocytes
 - Antigen-independent proliferation
 - Include:
 - Thymus
 - Fetal liver, bone marrow

- **Secondary (peripheral) lymphoid tissues**
 - Initiation of antigen-specific immune response
 - Antigen-dependent proliferation
 - Include:
 - Spleen (white pulp)
 - Lymph nodes
 - Peyer’s patches and solitary lymphoid nodules
 - NALT, tonsils, BALT
Rat, thymus

Mouse, thymus
HSC
DN
DP
CD4
CD8
(< 5%, 10^6/day)

Thymus
T cell maturation and selection

TCRγδ

Apoptosis 80%

Positive selection

TCRαβ

Apoptosis

Negative selection

CD4+
< 5% exit to periphery

CD8+
T lymphocytes

TCR$\alpha$$\beta$

CD4$^+$

T helper (T$_H$)

MHC II

CD8$^+$

cytotoxic T cell (CTL)

TCR$\gamma$$\delta$

MHC I
Differentiation of CD4+ T cells

naïve CD4+ T cell

activated Th0 cell

IL-2
IL-4
IL-5
IL-10
IL-13
IFN-γ

Th1

IFN-γ
IL-2
TNF β

CMI

Th2

IL-4
IL-5
(IL-10)
IL-13

Antibody (Humoral) response
Lymphocyte migration

Lymph node
- CCL19, CCL21
- PNAd

High endothelial venules

Naïve T cell
- CCR7
- L-selectin

Blood
- Intestine
 - CCL25
 - MadCAM-1

Thoracic duct

Afferent lymph

Skin
- CCL17
- CCL22
- CCL27
- E-selectin

Ag + MHC

CCR4, CCR10
- CLA

CCR9
- α4β7
B cell development in lymph nodes

- Naïve B cell
- Ag + T cells
- Paracortex
- Germinal center
- Days - weeks to apoptosis
- IgM
- Medulla
- Days - weeks
- 5 days
- 5 days to apoptosis
- Bone marrow
- IgG
- Memory B cell
- Isotype switching
- T cells
Thymic involution

- Normal physiologic process
 - Progressive decrease in size and relative weight
 - Decreased proliferative capacity and increased sensitivity to apoptosis
- Begins at sexual maturity
 - Rate and extent is species, strain and sex dependent
- In mice glucocorticoids can delay the progression of thymic involution
- Can confound interpretation
Thymus, 31 week old rat

Thymic involution, 2 yr old rat
Genetic influence on thymus size and thymic involution: C57BL/6 vs. DBA/2

Adapted from Scan J Immunol 57:410, 2003
Thymus involution in BALB/c mice

Adapted from Mol Immunol 38: 841, 2002
Adapted from Burn-Naas et al, pg 430, 2001
Stress in routine preclinical safety studies

■ Hallmarks
 ■ Decreased body weights
 ■ Decreased feed consumption
 ■ Decreased thymic weights
 ■ Increased adrenal gland weights
 ■ Increased monocytes and neutrophils
 ■ Decreased lymphocytes and eosinophils

■ Additional findings
Thymus

Normal

Stress-related
Thymic hemorrhage

Acute stress effect
Spleen

Normal

Stress-related
Acute stress and the immune system

- Biological effects are dependent on level and duration of mediators

- Acute stress:
 - Enhances innate immunity
 - ↑ NO production by macrophages and neutrophils
 - ↑ Pro-inflammatory cytokine production
 - ↑ Acute phase protein synthesis
 - ↑ Complement activity
 - Suppresses adaptive immunity
 - ↓ Ag-specific antibody responses
 - ↓ T cell proliferation
 - ↓ Cytotoxic T cell responses
Chronic stress and immunity

- Immunosuppression
- Chronic restraint stress increased lymphocyte apoptosis via CD95 expression
 - 35-40% ↓ splenic lymphocytes
 - opioid-dependent
 - adrenalectomy had no effect (spleen < sensitive to corticosterone??)
 - Interestingly testis Sertoli cells express high levels of CD95L
- Sensitivity to chronic stress
 - Mature T cells > B cell
- Confounded by other physiologic responses
 - Anorexia
 - Decreased body weight
- Short-term toxicity studies (28 day)
 - Stress early
 - Habituation or tolerance later
Literature Review for Rats:
Sensitivity of Various Systems to Stress

- Thymus and spleen > lymph node
- Effects on peripheral blood lymphocytes earlier than thymic lymphocytes
- Sensitivity of organ weights:
 - Thymus = adrenal (many)
 - Thymus > adrenal (1 paper)
 - Adrenal > thymus (2 papers)
- Body weight gain and corticosterone generally most sensitive
- Histological changes attributable to stress between animals can be significantly varied
Chemicals associated with stress effects in rodent models

- Organophosphorous compounds
- Trimethyltin
- Chlorimeform
- PCBs
- Unleaded gasoline
- Cadmium
- Mirex
- Propanil
- Deltmethrin
- Carbaryl
- Gallium arsenide
- Morphine
- Ethanol
- Haloperidol
- Phenytoin
- Paraquat
Chemicals associated with stress effects in rodent models

- Rodent models
 - Increased corticosterone levels
 - Degree and level of increases determines biological effect
 - Enhance immune responses
 - Suppress immune responses
 - Quantitative relationship between neuroendocrine mediators and immunosuppression

- Dose
 - MTD’s only

- Biological effects
 - Decreased spleen &/or thymus cellularity
 - +/- detectable functional changes
Predicting stress-induced immunosuppression

- Drugs and chemicals at high doses can induce immunosuppressive stress responses in mice

- Quantitatively consistent effects on parameters by chemical and physical stressors at comparable corticosterone AUC values
 - Spleen, thymus and blood
 - Chemical stressors in SP and TY are more like restraint stress than exogenous corticosterone
 - Exogenous corticosterone and chemical stressors have a more dramatic effect on blood parameters (e.g. decreased lymphocytes, increased neutrophils) than restraint stressors

- Values for immunological effects of the chemicals were calculated from the dose-response line for each chemical at the dosage yielding 50% suppression of MHC class II. These are compared to the values predicted using corticosterone AUC values induced by restraint at the AUC value yielding 50% suppression of MHC class II.
Predicting stress-induced immunosuppression

- MHC II expression on leukocytes
 - Peritoneal macrophages
 - Splenic B lymphocytes
 - Thymic lymphocytes

Predicting stress-induced immunosuppression

- ↓ NK cell activity

Predicting stress-induced immunosuppression

- MHC II expression is more sensitive vs NK cell activity
- MHC II expression predicted effect of chemical stressors but not NK cell activity
- ↓ MHC II expression not known to be associated with other stressors
- ↓ MHC II expression not known to be associated with drugs or chemical exposures that don’t induce stress response
- Only applicable to acute stress effects of a single dose of chemical stressor
- Rat immune parameters are < sensitive to corticosterone compared to mice
 - Not because the response to stress in mice > rats
Immunotoxicity

- Direct or indirect adverse effects of the immune system

- Immunosuppression
 - Increased susceptibility to disease

- Normal
 - “No Effect”

- Immunoenhancement
 - Immune-mediated disease
 - Autoimmunity
 - Hypersensitivity
Immunotoxicity

- Whole animal
 - Increased incidence of disease

- Tissue level
 - Organ weights
 - Cellularity

- Cellular level
 - Function
 - Surface markers
 - Products
Routine evaluations

- Hematological assessments
- Lymphoid organ weights
 - Thymus
 - Spleen
- Histopathology
 - Thymus
 - Spleen
 - Bone marrow
 - Lymph nodes

- Immunotoxicity studies
- Immunophenotyping
 - Peripheral lymphocytes
 - Tissue lymphocytes
Pathologic Changes in the Immune System

- Like most tissues, lymphoid tissue has a limited repertoire of possible responses to damage or stimuli
 - Hyperplasia
 - Atrophy
 - Necrosis
 - Neoplasia

- Some changes are merely a reflection of the function of the lymphoid tissue
 - Filtering of lymph
 - Antigens
 - Particulates (foreign material; RBCs ⇒ sinus erythrocytosis)
 - Cells
Xenobiotics & Suppression

- Increased susceptibility to infections
- Halogenated aromatic hydrocarbons
 - genetic basis for susceptibility
 - Ah-R
 - TCDD
 - severe lymphoid atrophy, thymus
Female Sprague-Dawley rats: Control (6A) and Treated (6B). 31 weeks of treatment with a low dose of dioxin.
Xenobiotics & Suppression

- Polycyclic aromatic hydrocarbons
 - environmental contaminants
- Metals
 - lead, arsenic, mercury, cadmium
- Organic solvents
 - benzene - myelotoxic
 - toluene
 - carbon tetrachloride
Xenobiotics & Suppression

- Therapeutics
 - alkylating agents, cyclophosphamide
 - corticosteroids
 - cyclosporin - inhibits IL-2 gene transcription
 - macrolides - FK506

- Drugs of abuse

- UV-B radiation
30 Day old Sprague-Dawley rat treated three hours previously with dexamethasone (1 mg/kg)
F344 rat treated with cyclophosphamide 48 hours earlier. Marked apoptosis in the PALS of the spleen.
Hypersensitivity reactions

Type I
- **IgE-Mediated Hypersensitivity**
 - Ag induces cross-linking of IgE bound to mast cells and basophils with release of vasoactive mediators.
 - Typical manifestations include systemic anaphylaxis and localized anaphylaxis such as hay fever, asthma, hives, food allergies, and eczema.

Type II
- **IgG- or IgM-Mediated Cytotoxic Hypersensitivity**
 - Ab directed against cell surface antigens mediates cell destruction via complement activation or ADCC.
 - Typical manifestations include blood transfusion reactions, erythroblastosis fetalis, and autoimmune hemolytic anemia.

Type III
- **Immune Complex-Mediated Hypersensitivity**
 - Ag-Ab complexes deposited in various tissues induce complement activation and an ensuing inflammatory response mediated by massive infiltration of neutrophils.
 - Typical manifestations include localized Arthus reaction and generalized reactions such as serum sickness, necrotizing vasculitis, glomerulonephritis, rheumatoid arthritis, and systemic lupus erythematosus.

Type IV
- **Cell-Mediated Hypersensitivity**
 - Sensitized TH1 cells shown above release cytokines that activate macrophages or TC cells that mediate direct cellular damage. TH2 cells and CTLs mediate similar responses.
 - Typical manifestations include contact dermatitis, tubercular lesions, and graft rejection.
Xenobiotics & Hypersensitivity

- Polisocyanates (eg. toluene)
 - inhalation and skin

- Acid anhydrides (eg. TMA)
 - inhalation and skin

- Metals
 - platinum, nickel, beryllium
 - type IV
Xenobiotics & Hypersensitivity

- **Drugs**
 - 10% of all adverse effects
 - type I - IV

- **Pesticides**
 - contact & immediate hypersensitivity

- **Cosmetics**
 - contact dermatitis

- **Formaldehyde**
 - contact hypersensitivity
Autoimmunity

- Reflects a loss of immunologic tolerance
- Mechanisms
 - Auto-antibodies
 - Immune complex deposition
 - Sensitization of effector T cells
- Immunoregulatory abnormality most likely centered on T helper cell CD4+ T cell
 - TH1 > TH2 imbalance
- MHC
 - certain MHC alleles
- TCR
 - V beta regions
Xenobiotics and Autoimmunity

- Methyl dopa - antihypertensive
- Hydralazine, isoniazid & procainamide
 - SLE - like disease
- Halothane
 - autoimmune hepatitis
- Vinyl chloride
 - collagenous tissues
Xenobiotics and Autoimmunity

- Mercury
 - direct injury
 - autoimmune glomerular nephropathy

- Silica
 - adjuvant

- Multiple chemical sensitivity syndrome
 - ? immune component
What is the “Issue”

- Regulatory guidance on immunotoxicity
 - CPMP: Note for Guidance on repeated dose toxicity
 - FDA: Guidance for industry, immunotoxicology evaluation of investigational new drugs

- Immunotoxicity testing should be performed on all new investigational drugs or medicinal products

- Initially - gross and microscopic evaluations of lymphoid tissues
Immunopathology

- Two important requirements of the CPMP and FDA guidances
 - Lymphoid organ weights
 - Thymus and spleen
 - Draining and distant lymph nodes
 - Enhanced histopathology
 - Thymus, spleen, bone marrow, and draining and distant lymph nodes

- Standard 28-day repeat dose toxicity studies are recommended for immunotoxicity testing

- Procedures should be GLP compliant
General considerations

- Initial phase – nonfunctional endpoints
- If there are indications of immunotoxicity – then specific immunological end points
- Terminology used
 - Descriptive vs interpretive
- Interpretation of the findings must take into consideration other toxicities and the health status of the animal
- Differentiating stress effects vs direct toxicities
Experimental Dexamethasone Treatment – Mouse Thymus

Control

24 hr

J. Schuh, Applied Veterinary Pathobiology PLLC
Thymus

Control Rat

Treated Rat
Storage spleen
- Thick capsule and many trabeculae
- Prominent smooth muscle
- Relatively poorly developed white pulp
- Dogs, cats, horses

Defense spleen
- Well developed lymphoid tissue
- Less smooth muscle
- Rats, mice, humans

Intermediate spleen
- Cattle, swine
Microarchitecture of the spleen

naïve (4x) antigen-stimulated (10x)

T cells
B cells
germinal center
Marginal zone

ER-TR9
MZM

MOMA-1
(MMM)
Rat Spleen

Control 10x

Treated 10x

Note loss of marginal zone lymphocytes
Lymph nodes - mouse

- Inguinal LN

- Renal and iliac LN
 - Evan’s blue

- Mandibular LN
 - Pontamine sky blue
Lymph nodes

Mesenteric LN

Popliteal LN
Lymph node

The lymph node

- lymphoid follicle (mostly B cells)
- medullary sinus
- artery
- vein
- efferent lymphatic vessel
- T-cell area
- germinal center
- marginal sinus
- afferent lymphatic vessel
The Germinal Center

Lymphoid follicles
Lymph node histology

- Extreme variability:
 - Species
 - Strain
 - Husbandry/environment
 - Location
 - Age
Best Practice Guideline for the Routine Pathology Evaluation of the Immune System

STP Immunotoxicology Working Group

P. Haley¹ (chair), R. Perry² (cochair), D. Ennulat³,
S. Frame⁴, C. Johnson⁵, J-M Lapointe⁶,
A.Nyska⁷, P. Snyder⁸, D.Walker², G. Walter⁹

Toxicologic Pathology, 33:404–407, 2005
(http://www.toxpath.org/Position_Papers/Immune_System.pdf)

¹AstraZeneca, Wilmington DE; ²Wyeth Research, Chazy NY; ³GlaxoSmithKline, King of Prussia, PA
⁴DuPont Company, Haskell Lab for Environmental Sciences Toxicology & Industrial Medicine, Newark DE; ⁵Amgen, Inc. Thousand Oaks, CA ⁶Pfizer Global Research & Development, Groton CT;
⁷National Institute of Environmental Health Sciences, Research Triangle Park, NC; ⁸Purdue University School of Veterinary Medicine, West Lafayette, IN; ⁹Independent Consultant, Kalamazoo
Best Practices: Immunopathology

- **Collection and Weighing of Lymphoid Tissue**
 - Recording and evaluating thymic and splenic weights should be continued.
 - Interpretation of these organ weights should only be done in the context of all other clinical, histopathology, and clinical pathology data from the study.
 - Alterations of spleen and thymus weights (along with histopathology) are reasonable indicators of systemic immunotoxicty.
 - Spleen and thymus weights are likely to be more reliable indicators than are changes in the weight of peripheral lymph nodes.
Best Practices: Immunopathology

- Routine Best Practice for Histopathologic Examination of Lymphoid Tissues as Indicators of Systemic Immunotoxicity
 - Each animal should receive a thorough macroscopic examination of the spleen, thymus and lymph nodes
 - Thymus, spleen, draining lymph nodes, bone marrow *in situ*, and any gross lesions of a lymphoid organ represent the minimum of tissues for routine evaluation of the lymphoid system
Best Practices: Immunopathology

Routine Best Practice for Histopathologic Examination of Lymphoid Tissues as Indicators of Systemic Immunotoxicity

- The most proximal regional lymphoid tissues that drain the drug application site can and should be examined microscopically
- Orally given drugs: Peyer’s patches and mesenteric lymph nodes
- The most proximal draining peripheral lymph nodes is appropriate in cases of cutaneous, subcutaneous, or intradermal application
Alterations of spleen, thymus, and bone marrow histology are likely to be more reliable indicators of systemic immunotoxicity than are changes in distal peripheral lymph nodes.
Semi-Quantitative Description of Lymphoid Tissue Changes

‘Best Practice’ for lymphoid tissue microscopic examination involves “a semi-quantitative description of changes in compartments and/or microenvironments of specified lymphoid organs.”

1) each lymphoid organ has separate compartments that support specific immune functions
2) these compartments can and should be evaluated individually for changes
3) descriptive, rather than interpretative terminology, should be used to characterize changes within these compartments
Recommendations

- Morphological and functional compartments specific to each tissue
- Each compartment should be evaluated for substantive changes
- Substantive changes should be reported using standardized descriptive nomenclature rather than interpretative terminology
- Example
 - “thymus, cortex, decreased lymphocytes, marked” would be preferable to “thymic involution”
Immunopathology

Descriptive vs. Interpretative Terms

<table>
<thead>
<tr>
<th>Descriptive</th>
<th>Interpretative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased cellularity</td>
<td>Atrophy</td>
</tr>
<tr>
<td></td>
<td>Lymphoid depletion</td>
</tr>
<tr>
<td></td>
<td>Involution</td>
</tr>
<tr>
<td></td>
<td>Hypoplasia</td>
</tr>
<tr>
<td>Increased cellularity</td>
<td>Hypertrophy</td>
</tr>
<tr>
<td></td>
<td>Hyperplasia</td>
</tr>
<tr>
<td></td>
<td>Proliferation</td>
</tr>
</tbody>
</table>
Recommendations

- Changes observed in the lymphoid tissues should be interpreted in the context of all the findings.
- Interpretation of lymphoid findings should be in the Discussion section of the report.
Specialized techniques are done AFTER the initial assessment shows a change has occurred

- Lymphoid tissue immunohistochemistry
- Blind scoring of lymphoid tissues
- Morphometry of lymphoid tissues
- Flow cytometry of lymphoid tissue cell suspensions

These procedures should be directed at answering a specific scientific question; they should NOT be used as routine screening tools.